ECON0106: Microeconomics

Problem Set 6

Duarte Gonçalves* University College London

Due date: 10 November, 12:30

Question 1. Let X be a finite set of alternatives. Recall two properties of a Stochastic Choice Function (SCF) ρ :

- (1) (Stochastic) Monotonicity: For any $x \in B \subseteq A \subseteq X$, $\rho(x,B) \ge \rho(x,A)$.
- (2) Weak Stochastic Transitivity (WST): For any $x, y, z \in X$, if $\rho(x, \{x, y\}) \ge 1/2$ and $\rho(y, \{y, z\}) \ge 1/2$, then $\rho(x, \{x, z\}) \ge 1/2$. Fix $X = \{x, y, z\}$. Prove or find a counterexample:
- (a) Monotonicity implies Weak Stochastic Transitivity.
- (b) Weak Stochastic Transitivity implies Monotonicity.
- (c) Comment on what your findings imply for stochastic choice representations.

Question 2. Let $\mathscr{R}:=\cup_{N\in\mathbb{N}}\mathbb{R}^N$ and, for $r\in\mathscr{R}$, let N(r) denote the length of the vector, and write $[N(r)]:=\{1,...,N(r)\}$. A quantal response is a mapping $Q:\mathscr{R}\to\Delta(\mathbb{N})$ such that $\sup(Q(r))\subseteq[N(r)]$. We write $Q_n(r)$ to denote the probability that Q(r) assigns to $n\in\mathbb{N}$ and r_n denotes the n-th entry of a vector $r\in\mathbb{R}^N$.

A quantal response function is a reduced-form generalisation of deterministic choice, most commonly employed in game theory. It takes a vector denoting the payoffs of different alternatives and maps it to a distribution over alternatives.

Consider the following restriction:

Definition 1. A quantal response Q is regular iff it satisfies

- (1) differentiability: for any $N \in \mathbb{N}$, Q restricted to \mathbb{R}^N is differentiable;
- (2) interiority: $Q(r) \in \operatorname{int} \Delta([N(r)])$; (3) monotonicity: $\forall r, r_n r_m \ge (>) 0 \iff Q_n(r) Q_m(r) \ge (>) 0$; and (4) responsiveness: $\frac{\partial Q_n(r)}{\partial r_n} > 0$, $\forall n \in [N(r)]$.

And now consider the following model:

Definition 2. A quantal response Q admits a control costs representation iff there is a convex $c:[0,1]\to\mathbb{R}\cup\{\infty\}$, strictly convex and \mathscr{C}^2 over (0,1), satisfying $\lim_{p\to 0}c'(p)=-\infty$, such that,

^{*} Department of Economics, University College London; duarte.goncalves@ucl.ac.uk. Please do not share these notes with anyone outside of this class.

for any $r \in \mathcal{R}$, $Q(r) = \arg\max_{\sigma \in \Delta([N(r)])} \sum_{\ell \in [N(r)]} \sigma(\ell) r_{\ell} - c(\sigma(\ell))$.

If Q admits a control costs representation, then it is said to be a control costs quantal response (CCQR).

Question 2.(a) Prove the following statement: If Q is a control costs quantal response, then Q is regular.

Question 2.(b) Suppose Q is a control costs qual response. Prove the following claims:

- (i) Q satisfies translation invariance: Q(r) = Q(r+k), for any constant vector $k \in \mathbb{R}^{N(r)}$;
- (ii) Q satisfies stochastic monotonicity: $\forall r, r' \in \mathcal{R}$, if $N(r) \leq N(r')$ and $r_n = r'_n \ \forall n \in [N(r)]$, then $Q_n(r') \leq Q_n(r) \ \forall n \in [N(r)]$; and
- (iii) Q satisfies strong stochastic transitivity: $\forall x, y, z \in \mathbb{R}$, if $Q_1((x, y)), Q_1((y, z)) \ge 1/2$, then $Q_1(x, z) \ge \max\{Q_1((x, y)), Q_1((y, z))\}$.

Question 2.(c) A buyer with control costs values an item at v and is choosing between buying at price p from the seller, and not buying a product, getting a payoff of 0. In short, the buyer's problem is summarised by r = (v - p, 0).

Suppose the seller knows the buyer's value v and the buyer's control costs c. Characterise the price p^* that maximises the seller's expected revenue (the price times the probability of sale at that price).

Question 2.(d) If *v* increases, what happens to the seller's maximised expected revenue?